Earthquakes are one of nature’s more unpredictable phenomena. Quakes can cause staggering levels of damage and trigger other natural disasters, like tsunamis. Compounding the effects of the initial quake (called a “mainshock”) are a series of aftershocks – smaller earthquakes that can heighten the existing problems in a quake’s aftermath.
Science has been able to establish laws dictating the magnitude and timing of aftershocks – Omori’s law, Båth's law, and the Gutenberg–Richter law are all accepted by the scientific community as accurate representations of aftershock behavior. But predicting the location of the next quake before it hits has thus far been out of science’s reach. Now, Harvard and Google have leveraged artificial intelligence to predict the location of aftershocks with more accuracy than ever before – and up to a year after the mainshock of an earthquake.
The parties, which consisted of Harvard Department of Earth and Planetary Sciences post-doctoral fellow Phoebe DeVries and Google AI recruiting lead Brendan Meade, as well as additional Google machine learning researchers Martin Wattenberg and Fernanda Viégas, began their analysis by compiling information from 118 “major” earthquakes worldwide. Next, they applied a deep learning technique called a neural net – which teach a computer by analyzing pre-labeled examples from a database to establish patterns corresponding to each label – to that data.
This method enabled researchers to “analyze the relationships between static stress changes caused by the mainshocks and aftershock locations” in a way far more accurate than the pre-existing model (called the Coulomb failure stress change system). Using “a scale accuracy running from 0 to 1 – in which 1 is a perfectly accurate model and 0.5 is as good as flipping a coin”, the new system achieved a 0.849 to the Coulomb system’s 0.583.
The research generated an “unintended consequence” beyond the previously unseen level of accuracy – the ability “to identify physical quantities that may be important in earthquake generation”, creating potential new ways of understanding how earthquakes behave. This piece of the deep learning model is called the von Mises yield criterion – popular “in fields like metallurgy”, it calculates “when materials will begin to break under stress”, and now may have use in earthquake science that was discounted before.
Machine learning may be useful for dredging up previously-ignored insight from existing data, but the system remains imperfect. It is currently too slow to make real-time predictions, and its focus on static (rather than dynamic) stress means it does not present the full scope of potential earthquake prediction. But its improvement over its predecessor is a promising step forward for seismologists and AI researchers alike – with refinement, it could signal a new day in earthquake science.
If You’re Wondering When A.I. Will Start Making Market Predictions…
Guess what – it already is. Hedge funds and large institutional investors have been using Artificial Intelligence to analyze large data sets for investment opportunities, and they have also unleashed A.I. on charts to discover patterns and trends. Not only can the A.I. scan thousands of individual securities and cryptocurrencies for patterns and trends, and it generate trade ideas based on what it finds. Hedge funds have had a leg-up on the retail investor for some time now.
Not anymore. Tickeron has launched a new investment platform, and it is designed to give retail investors access to sophisticated AI for a multitude of functions:
And much more. No longer is AI just confined to the biggest hedge funds in the world. It can now be accessed by everyday investors. Learn how on Tickeron.com.
The Moving Average Convergence Divergence (MACD) for GOOGL turned positive on August 28, 2025. Looking at past instances where GOOGL's MACD turned positive, the stock continued to rise in of 53 cases over the following month. The odds of a continued upward trend are .
Following a 3-day Advance, the price is estimated to grow further. Considering data from situations where GOOGL advanced for three days, in of 360 cases, the price rose further within the following month. The odds of a continued upward trend are .
The Aroon Indicator entered an Uptrend today. In of 296 cases where GOOGL Aroon's Indicator entered an Uptrend, the price rose further within the following month. The odds of a continued Uptrend are .
The RSI Indicator demonstrates that the ticker has stayed in the overbought zone for 12 days. The longer the ticker stays in the overbought zone, the sooner a price pull-back is expected.
The Stochastic Oscillator demonstrated that the ticker has stayed in the overbought zone for 14 days. The longer the ticker stays in the overbought zone, the sooner a price pull-back is expected.
Following a 3-day decline, the stock is projected to fall further. Considering past instances where GOOGL declined for three days, the price rose further in of 62 cases within the following month. The odds of a continued downward trend are .
GOOGL broke above its upper Bollinger Band on September 03, 2025. This could be a sign that the stock is set to drop as the stock moves back below the upper band and toward the middle band. You may want to consider selling the stock or exploring put options.
The Tickeron Price Growth Rating for this company is (best 1 - 100 worst), indicating outstanding price growth. GOOGL’s price grows at a higher rate over the last 12 months as compared to S&P 500 index constituents.
The Tickeron Profit vs. Risk Rating rating for this company is (best 1 - 100 worst), indicating low risk on high returns. The average Profit vs. Risk Rating rating for the industry is 90, placing this stock better than average.
The Tickeron Valuation Rating of (best 1 - 100 worst) indicates that the company is slightly undervalued in the industry. This rating compares market capitalization estimated by our proprietary formula with the current market capitalization. This rating is based on the following metrics, as compared to industry averages: P/B Ratio (8.368) is normal, around the industry mean (9.303). P/E Ratio (26.776) is within average values for comparable stocks, (59.271). Projected Growth (PEG Ratio) (1.709) is also within normal values, averaging (26.725). Dividend Yield (0.003) settles around the average of (0.022) among similar stocks. P/S Ratio (8.326) is also within normal values, averaging (24.685).
The Tickeron SMR rating for this company is (best 1 - 100 worst), indicating very strong sales and a profitable business model. SMR (Sales, Margin, Return on Equity) rating is based on comparative analysis of weighted Sales, Income Margin and Return on Equity values compared against S&P 500 index constituents. The weighted SMR value is a proprietary formula developed by Tickeron and represents an overall profitability measure for a stock.
The Tickeron PE Growth Rating for this company is (best 1 - 100 worst), pointing to outstanding earnings growth. The PE Growth rating is based on a comparative analysis of stock PE ratio increase over the last 12 months compared against S&P 500 index constituents.
The average fundamental analysis ratings, where 1 is best and 100 is worst, are as follows
a holding company with interests in software, health care, transportation and other technologies
Industry InternetSoftwareServices